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Abstract: Range-resolved detection of submerged scattering layers was investigated in the 
Gulf of Mexico based on vertical profiles made with a LiDAR (Light detection and range) 
system having a green laser (wavelength λ = 532 nm). The backscattering power (Sd) 
variability was decomposed in principal components (PCs) and related to non-polarized Sd, 
the Sd ratio between cross- and co-polarized waveforms, the chlorophyll-a fluorescence 
(Fchl), and the ratio between volume scattering angles of 150° and 100°. The variance of PCs 
was dominated by non-polarized Sd followed by Fchl. Correlation between PC1 scores and 
Fchl anomalies suggested that Sd was mainly originated from pigmented particulates. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The identification of spatial discontinuities in the ocean has important implications in marine 
optics because accuracy of remote sensing products derived from passive optical 
measurements (e.g., chlorophyll-a concentration) are very sensitive to vertical and horizontal 
changes on patchiness [1]. Also, thin optical submarine layers (e.g., < 1 m thick) have been 
proposed as important ecological niches where biogeochemical processes are intensified [2]. 
Lastly, the detection and discrimination of subsurface optical anomalies is relevant for 
military countermeasures (e.g., localization of mines and submarines) [3]. 

An important virtue of measuring systems in the last two applications is the capability of 
finding several targets and characterizing their composition in a quasi-simultaneous way and 
at some distance from the sensor to minimize instrument-induced perturbations. In that 
regard, multi-beam acoustic methods provide a relatively coarse spatial resolution with 
respect to optical techniques based on range-resolved LiDAR (Light detection and range) [4]. 
Likewise, unlike sound measurements, time-resolved LiDAR backscattering and fluorescence 
waveforms can be combined for performing the recognizance of the object under 
investigation [5]. Lastly, another important difference with acoustic approaches is that 
LiDAR probes are less invasive for detecting submerged features since they can be used from 
aerial or space platforms [6]. Unlike range-resolved LiDAR systems, the use of in situ vertical 
profilers (e.g., Argos floats, optical package in rosette) for mapping submarine optical layers 
is intrusive and prone to several sampling artifacts (e.g., non-steady water pumping, uneven 
depth measurements) [7]. Likewise, LiDAR determinations may include additional system 
parameters (e.g., vertical and horizontal scanning, polarization and variable Field-of-View or 
FOV) that can be applied to improve the discrimination of layers. 
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The detection of layers based on range-resolved LiDAR measurements are commonly 
performed based on signal slope changes and thresholds [8,9]. Most of these techniques have 
been designed for detecting and characterizing atmospheric layers based on spaceborne 
LiDAR [9,10]. The slope method is not sensitive to LiDAR system calibration changes even 
though is prone to large errors due to the presence of signal spikes and/or gradients within the 
internal structure of the optical layer. The implementation of thresholds and anomalies 
generally involves the background noise subtraction and are particularly reliable for those 
cases where the signal/noise ratio is high. The signal background subtraction can be achieved 
based on different methods (e.g., a linear regression model of log-transform backscattering 
[11]. 

The objective of this study is to test a deconvolution technique based on principal 
component analysis (PCA) for detecting and characterizing submarine scattering layers based 
on range-resolved LiDAR backscattering waveforms and independent ancillary information 
derived from fluorescence and angular scattering measurements. The layer 
detection/discrimination algorithm was developed with vertical profiles obtained by an 
underwater LiDAR system (FSUIL or Fine Structure Underwater Imagining LiDAR) in 
coastal waters of the Gulf of Mexico during March of 2016. This study is divided in three 
main sections. In the first section, different families of wavelets are evaluated for reducing the 
noise of LiDAR waveforms. In the second section, PCA orthogonal modes were related to 
LiDAR backscattering for three polarization states (non-polarized, linear cross-polarized and 
linear co-polarized components) and concurrent measurements related to chlorophyll-a 
fluorescence (Fchl) and angular changes on volume scattering function (βr). Lastly, principal 
components of variance were applied to compute fine spatial resolution of range-resolved 
anomalies, and the performance of the PCA technique for detecting and discriminating 
scattering layers was investigated at different stand-off ranges and water turbidities. Also, the 
influence of vertical changes on water optical composition and multiple scattering effects on 
layer localization and identification was examined and discussed. 

2. Methodology 

2.1. LiDAR configuration 

FSUIL is a near-monostatic pulsed laser scanning system developed at Harbor Branch 
Oceanographic Institute [12] (Fig. 1). The LiDAR can obtain information at 3 angles with 
respect to the zenith (0, 90 and 180°) from a specific location in the water column and have a 
0.5° azimuthal resolution angles (Fig. 1(a)). FSUIL has a green laser (λ = 532 nm) with a 
divergence beam angle of 1 mrad, a 2-D scanner, and a receiver assembly with four 50 mm 
diameter telescopes. The receivers encompass two non-polarized (ch_1 and ch_4) and two 
polarized (ch_2 and ch_3) channels. Two FOVs controlled by a fixed iris were used (75.7 
mrad for ch_1, ch_2 and ch_3, and 15 mrad for ch_4). Each telescope has a bandpass filter 
centered at 532 nm (3 nm at full width-half-maximum, FWHM, diameter = 50 mm), an F/2 
plano-convex lens, a field stop iris, and a high speed photomultiplier tube (PMT) detector 
(Hamamatsu R9880U-210). 
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Fig. 1. FSUIL system. A) deployment and two shooting configurations (upper and lower 
cartoon), b) Optical package and LiDAR in operation (lower right picture), and c) 3-D 
scanning geometry of FSUIL. A matrix of 23 (width) x 20 (height) pulses is laying over the 
target plane (red dots) and is partially intersected by the common scattering volume of each 
receiver. ch_1 (blue lines) and ch_4 (green lines). Pulse with the maximum intensity (magenta 
lines). 

The source-detector distance of ch_2 and ch_3 (0.266 m) is larger with respect to that of 
ch_1 1 and ch_4 (0.157 m). The energy of each pulse has a Gaussian spatial profile, a pulse 
duration at FWHM of 0.5 ns, and an energy of 20 µJ. The scanning area contains 460 pulses 
and covers an area of 1.7399 m (width) x 1.5748 m (height) at 10.45 m from the detector. The 
scanning pulse grids are created by swiping the laser beam from left to right for odd rows and 
vice-versa at consecutive even rows. The angular inter-pulse separation is 0.34° and the pulse 
repetition frequency is 500Hz. Time-resolved linear intensity measurements with 12-bit 
resolution (S) were obtained for each pulse. Intensity values were converted to voltage with a 
digitizer from SPDevices (ADQ-12) after manually applying specific gains for each receiver. 
The gains were constant during the whole survey and the waveforms were archived at 12-bit 
resolution. For each channel, each waveform was originally digitized in 256 time bins 
(hereafter absolute time bins). 

2.2. Signal processing 

The approach proposed in this study for remote detection of submarine layers is based on 
variance decomposition of waveforms, thus resulting variability modes are expected to be 
strongly affected by sensor saturation events and noise derived from different sources 
(systematic and non-systematic) that must be removed before applying the inversion method 
described in section in 2.6. 

Sensor saturation events were sometimes observed and were thought to be caused by local 
backscattering spikes, which in severe cases leads to an observed ringing effect. This 
phenomenon was associated with the presence of high-reflective targets (i.e., ‘hard’ targets) 
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intercepting the laser beam. This signal saturation was empirically detected based on a full 
width at half maximum (FWHW) value of 2.5 ns. The noise of time-resolved LiDAR 
backscattering measurements was reduced by filtering the original waveforms without high-
reflective targets with continuous wavelet transforms. Negative values in original waveforms 
were removed by adding an offset of 20 units to the raw data which is ac-coupled. 

The wavelet is a wave-like oscillation that begins and ends at zero and that can be used to 
extract information of data sets having a finite domain and sharp discontinuities. Similar to 
Fourier, a wavelet function is a superposition of functions; however, the scale of the 
phenomenon is a critical concept for a wavelet representation. A general expression for a 
discrete wavelet function is: 
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where W(x) is the scaling function for the mother wavelet φ, and ck are the wavelet 
coefficients. The parameters s and l are integers that scale and dilate the original mother 
function. In this study, four different families of continuous wavelets were evaluated: 
Coiflets, Daubechies, Symlets and biorthogonal (hereafter coif, db, sym and bior, 
respectively) [13]. Wavelet families coif and sym (db and bior) are near (far from) symmetry. 
Another important difference between the selected wavelets is the number of vanishing 
moments (e.g., 2Nw for coif, Nw for db, where Nw is the order of the wavelet). 

The calculations were made using scripts implemented in Matlab R2015b and the wavelet 
toolbox. A common initial setting in all wavelets was the use of a soft threshold based on 
Donoho and Johnstone’s universal rule and a rescaling using level-dependent estimates of 
noise. For each detector, the mother wavelet having the highest correlation with the original 
raw signal was selected for denoising the LiDAR waveforms before the variance 
deconvolution [14] (see section 2.6). The Spearman rank correlation coefficient (ρs) [15] was 
chosen for comparisons of filtered and unfiltered backscattering signals. For each channel, the 
correlations were made based on seven waveforms measured within a range of water depths 
(34.07-61.5 m) and turbidities (beam attenuation coefficient at λ = 532 nm, c = 0.31-1.25 
m−1). For the sake of simplification, the wavelength notation of each optical parameter is not 
included in the remaining sections of the manuscript. The number of decomposition levels for 
each wavelet family was optimized based on the maximum value of ρs. 

The noise suppression by wavelets was examined by calculating the Discrete Fourier 
Transform (DFT) of the initial (i.e., absolute time bins 1 to 30) and terminal (absolute time 
bins 156 to 256 and 200 to 256 for ‘turbid’ and ‘clear’ water cases, respectively) portions 
(hereafter off-water and in-water noise, respectively) of raw and denoised waveforms derived 
from cross and co-polarized channels. In all cases, the DFT was calculated after detrending 
the data sets. Five waveforms were selected for each water turbidity case (i.e., ‘clear water’, c 
= 0.24 to 0.27 m−1, water depth = 30.85 to 30.88 m, ‘turbid water’, c = 0.98 to 1.38 m−1, water 
depth = 55.6 to 58.3 m). A stationary behavior was assumed (i.e., a critical approximation of 
DFT) for each time series, thus the DFT of off-water noise was computed by merging 5 data 
sets for each water turbidity case study and FSUIL receiver. The power spectra of in-water 
noise in-water was computed based on individual waveforms. 

2.3. LiDAR backscattering model 

The propagation of each LiDAR pulse through an aqueous optical medium is associated to 
two physical phenomena: 1) beam spreading and 2) exponential attenuation of energy. These 
LiDAR propagation processes are expected to influence the deconvolution technique 
proposed here, thus their effects are indirectly examined based on water turbidity changes. 
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The LiDAR equation can be represented with the following equation [16,17]: 

 ( )d
2 1S (z) cost p dS F A EN −= ηρ θ  (3) 

 2 ( , , )E ob Kze ς ω θ−=  (4) 

 2N 2 zπ=  (5) 

where Sd is the received optical peak power in m−1 sr−1, St is the transmitted optical peak 
power in m−1 sr−1, η is the optical efficiency of the receiving optics (dimensionless), Fp is the 
FOV loss factor (dimensionless), Ad is the aperture area of the receiver optics in m2, θ is the 
off-nadir transmitted angle (°), ς is a pulse stretching factor (dimensionless) that depends on 
the total scattering coefficient (b), the single scattering albedo (ωo) and θ. K is the diffuse 
attenuation coefficient (m−1), and z is the range in m. Notice that the product ς(b,ωo,θ) K is 
equivalent to Ksys or the LiDAR attenuation coefficient. Thus, Ksys includes multiple 
scattering effects due to changes on ς [18]. 

The Fp is also known as the overlap function and describes how scattered transmitted 
energy is arriving to the detector as a function of range [19]. Fp values vary between 0 and 1 
when scattered photons are completely out or fully inside the FOV, respectively. Based on 
tank experiments [20], Fp was 1 (i.e., backscattered energy originated inside the scattering 
common volume) in ch_1, ch_2 and ch_3 when the range was 3.83, 2.72 and 3.94 m, 
respectively. Fp estimates in ch_4 were not possible due to the variability of the backscattered 
energy at very low turbidities (i.e., c = 0.045 m−1). 

2.4. In situ measurements 

The sampling of optical variables derived from LiDAR and additional instruments (i.e., 
absorption-attenuation and scattering –meters) was performed in coastal waters of the Gulf of 
Mexico during March of 2016. A total of 14 study sites encompassing day- and nighttime 
profiles were investigated even though only one cast during March 22 was selected for testing 
the layer detection algorithm due to three reasons. Firstly, the LiDAR measurements 
encompassed a wide range of water depth and allowed the study of optical layers near the 
surface (i.e., < 5 m depth). 

Thus, this information can be also used to validate range-resolved waveforms derived 
from spaceborne sensors (e.g., CALIOP or Cloud-Aerosol Lidar with Orthogonal 
Polarisation). Secondly, LiDAR measurements during that date were obtained upward-
looking (i.e., zenith shooting angle), thus it allowed a further comparison with concurrent 
shipboard LiDAR measurements (Shipboard Optical LiDAR Profiler, SLOP, Naval Research 
Lab, Alan Weidemann).Lastly, the chosen FSUIL data set had a minimum time difference 
(i.e., 21 minutes) with vertical profiles of inherent optical properties obtained by another 
research team. During March 22, the LiDAR instrument was deployed in an ascending 
continuous mode during daylight conditions (local time between16:55 and 17:16 pm). The 
contribution of ambient light to LiDAR backscattered power was minimized by using 50 mm 
interference filters (FWHM = 5 nm, center wavelength 532 ± 1 nm, out of band rejection 
PD6, Materion Inc.). Also, strong LiDAR returns near the sea-surface were eliminated due to 
signal contamination caused by retro-reflection of forward-scattered photons. Given the 
relatively slow ascending rate of the LiDAR instrument with respect to the shooting/detection 
rate, there was a depth overlap between consecutive range-resolved LiDAR waveforms. 

LiDAR waveforms were always obtained with the same angular geometry (i.e., fixed laser 
pointing angles for each detector). The laser shot number corresponding to the maximum 
intensity was 311, 312, and 266 for detector 1, 2, and 3 respectively. The pulse position is 
determined based on a matrix of 20 (vertical) x 23 (horizontal) shots starting in the upper-left 
corner and finishing in the lower-right corner. LiDAR measurements were accompanied by 
concurrent (i.e.., backscattering coefficient at λ = 532 nm, bb, Fchl, z, β at scattering angles ψs 
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of 100, 125 and 150° and λ = 532 nm) and non-concurrent (i.e.., absorption coefficient, a, and 
c at λ = 532 nm bb at λ = 529 nm) depth profiles. This complementary information was used 
to develop the range-resolved layer detection algorithm and help to elucidate the composition 
of each scattering layer. 

Raw total backscattering (i.e., water + particulates) determinations at 117° and λ = 532 nm 
were made using the optical package BBFL2 (sensitivity = 0.003 m−1 sr−1, sampling rate = 8 
Hz, WetLabs, Inc). Also, this sensor package allowed Fchl measurements (excitation λ = 465 
nm, emission λ = 695 nm, sensitivity = 0.025 mg m−3, range = 0-50 mg m−3). Values of z 
were derived from a CTD sensor attached to the optical package (accuracy = ± 0.1%, Sea-
Bird, Inc). 

The angular variation of the volume scattering function was estimated from β(ψs1)/ 
β(ψs2) ratios, where ψs1 and ψs2 are computed at 150 and 100°, respectively. The 
measurements were made using a backscattering-meter ECO-VSF3 (WetLabs, Inc.) and with 
a sensitivity of 1.24 10−5 m−1 sr−1. The calibration of β values was performed by the 
manufacturer by using 2 μm microspherical polystyrene beads (Duke scientific) [21]. The 
magnitude of the particulate backscattering coefficient (bbp) was computed in two steps. 
Firstly, the pure seawater backscattering contribution at 117° (βw) was subtracted from total β 
in order to obtain βp. Lastly, bbp was derived by multiplying βp by 2π χp, where χp is a 
wavelength-independent proportionality factor that was assumed to be 0.9 [22,23]. 

Calculations of bb also involved two steps. Firstly, the pure seawater backscattering 
contribution to bb (bbw) was estimated from tabulated tables by multiplying the theoretical 
scattering coefficient of pure seawater (bw) by 0.5 [24]. Lastly, bb values were computed by 
summing bbw and bbp values as estimated above. Protocols for determining a and c values 
have been previously described [25]. The b was computed by subtracting a from c 
measurements. Also, the particulate scattering coefficient (bp) was derived by subtracting the 
seawater contribution from b values. The particulate backscattering efficiency (bbp

eff) was 
calculated by dividing bbp by bp. Likewise, ωo at λ = 532 nm was determined by calculating 
the ratio b/c. 

2.5. Multiple scattering effects 

As the LiDAR pulse propagates away from the detector the number of scattering events and 
probability of extinction of photons increase. This phenomenon is enhanced at higher 
concentrations of particulates and associated water turbidities. To study the influence of 
multiple scattering on range-resolved detection and discrimination of optical layers, two 
parameters were calculated: the absolute (diff(c - Ksys) = c - Ksys) and relative (f(c - Ksys) = (c 
- Ksys)/c) difference between c and Ksys, respectively. In general, diff(c - Ksys) and f(c - Ksys) 
increase at higher water turbidities as c changes are larger than Ksys changes As turbidity 
increases (decreases), the contribution of multiple scattering to total scattering (i.e., single + 
multiple) increases, and Ksys approaches the magnitude of K (c) [16,19]. 

The calculation of Ksys was based on denoised waveforms not including saturation events. 
For each channel, each K sys value was derived every 5 ns as the slope of the linear regression 
function between the log-transformed backscattering signal and the range in m. For each 
waveform, the initial and ending of point of each group of Ksys estimates was 2.22 and 4.44 m 
from the laser source, respectively. The arithmetic average of Ksys values (<Ksys>) for each 
shot was associated to the water depth of the FSUIL instrument (i.e., first range-resolved time 
bin) by substracting an offset of 1.34 m. Notice that the water depth is derived from the depth 
sensor integrated in the optical package measuring the ancillary variables (i.e., Fchl and βr). 

Values of <Ksys> were matched with c measurements by interpolating original values at 1 
m vertical resolution. 
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2.6. Statistical analysis 

Variance modes of denoised LiDAR waveforms derived from three FSUIL receivers were 
computed based on PCA [26]. Principal components (hereafter PCs) represent directions of 
maximum variability for a particular data set and are constructed as linear combinations that 
are independent one from each other (orthogonal). The main intention of PCA is the 
dimensionality reduction of the data. However, in our case, PCA was also applied to identify 
which modes of LiDAR-related backscattering variability can be used to detect and 
discriminate vertical discontinuities associated to uneven distribution and composition of 
particulates throughout the water column. For each waveform, only a subset of backscattering 
values corresponding to arriving times between 2.5 and 42.5 ns (i.e., 0.28-4. m away from the 
trigger, absolute time bins 40 to 121) were analyzed in order to avoid the small signal/noise 
ratios of the leading and trailing portions of each waveform. Also, an individual PCA 
calculation was performed for each time bin, thus a finer temporal resolution was achieved 
(i.e., 0.5 ns or 5.55 cm). 

The selection of PCA variables was defined based on the following criteria. Firstly, the 
co-dependency among LiDAR waveforms measured by different receivers was minimized by 
reducing the number of channels since preliminary results suggested a major redundancy (> 
90% of the total variance was explained by the first component) when four detectors were 
used. Secondly, ch_4 measurements were not included since time-resolved variability of 
backscattering was very irregular and did not show the typical maximum backscattering 
power within the common scattering volume. Thirdly, only concurrent ancillary optical 
information collected during the upward FSUIL profile was used to avoid temporal aliasing 
with respect to LiDAR measurements. Lastly, Fchl and βr variables were chosen because their 
variability is linked to the origin of particulates in terms of size distribution and chemical 
composition (e.g., organic vs inorganic). 

The calculation of PCA encompassed 5 steps: 1) merging of Sd values derived from j 
waveforms and for the relative time bin i (i.e., relative time bin 1 is equivalent to absolute 
time bin 40), 2) calculation of parameters derived from Sd (i.e., depolarization ratio index or 

DRI = Sd
ch2/Sd

ch3) and βr, 3) z-transform of PCA input variables (i.e., z = (v - v
−

)/σ, where v
−

 
and σ are the arithmetic average and standard deviation of v, respectively, 4) matching of 
range-resolved LiDAR backscattering measurements with ancillary variables (i.e., βr and 
Fchl) at 5.55 cm vertical resolution, and 5) variance decomposition in orthogonal 
components. Notice that there was only one waveform corresponding to the maximum 
intensity for each FSUIL depth position (i.e., no multiple shots from a specific vertical 
location). 

The statistical analysis was divided in three sections. Firstly, the variability associated to 
DRI, Fchl and βr was related to the PCA scores (i.e., coordinate of each point with respect to 
the principal component axes) corresponding to a specific time bin. The PCA correlation 
coefficients (Coeff), also known as loadings, were computed between PCs and parameters 
Sd

ch1, DRI, Fchl and βr. Secondly, the contribution of each principal component (i.e., 
eigenvalues) to the total variance and as a function of range was computed in order to 
examine potential variations in the leading and trailing sections of waveform subsets (i.e.., 
relative time bins 1-20 and 70-81, respectively) due to multiple scattering effects. Lastly, the 
sign and magnitude of PC scores were studied for different scattering layers located at depths 
characterized by contrasting optical characteristics in terms of c and bbp

eff. 

3. Results 

3.1. Noise reduction 

In general, the magnitude of the Spearman correlation coefficient suggested that biorthogonal 
spline level 2 (bior3.5, low and high frequency band pass of 12 and 4, respectively) and 
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Daubechies level 8 (db8) wavelets were the most and least performing numerical filters to 
remove high frequencies linked to noise (green and blue curves, respectively, Fig. 7, 
Appendix). For ch_1 and ch_2, coiflets and symlets with 3 and 8 decomposition levels (i.e., 
coif3 and sym8, respectively) had only a substantial noise reduction at very high c values 
measured at depths greater than 50 m (Fig. 7(a)-7(b)). The reconstruction of ‘free-noise’ 
waveforms based on wavelets was usually higher for cross-polarized backscattering 
measurements (ρs > 0.95 at all water depths, Fig. 7(c)). 

Examples of raw and denoised time-resolved and polarized backscattering signals arriving 
to ch_2 and ch_3 receivers are illustrated in Fig. 2 for two contrasting water turbidities. ‘Clear 
water’ and ‘turbid water’ case studies corresponded to LiDAR shots made upward and from a 
water depth of 30.88 and 58.33 m, respectively. Notice that depth of c measurements is 
matching the water depth associated to the first relative time bin of range-resolved 
backscattering used for the PCA deconvolution.The signal trigger was present at 17 ns (i.e., 
absolute time bin = 34)in all waveforms and is more remarkable for relatively low c 
measurements as expected. Also, the effect of a high-reflective target (e.g., signal ringing) on 
LiDAR backscattering was clearly identified in raw and denoised waveforms arriving to ch_2 
and when measurements were performed in relatively clear waters (Fig. 2(a)). 
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Fig. 2. Examples of raw and denoised LiDAR waveforms. a) ch_2, b) ch_3. Denoised 
waveforms (dn), mean noise (dash magenta line). LiDAR power at the receiver (Sd) is in log-
scale. Trigger (T) and highly reflective targets (R). 

As expected, the backscattering power of co- and cross-polarized channels increased at 
higher c values (Fig. 2(a)-(b)). Likewise, the decay of the backscattering power with range 
was larger at higher water turbidities. Due to this signal attenuation differences, spurious 
backscattering values (i.e., signal-to-noise ratio ≤ 1) for the ‘turbid water’ case were measured 
for samples collected later than 90 ns and 100 ns for ch_2 and ch_3, respectively. Noise also 
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dominated the initial portion of the waveform (i.e., first 15 ns). Indeed, the variability of 
LiDAR backscattering measured by ch_1 and ch_2 receivers was comparable between 
different water turbidities (Fig. 8). The power spectra (W) (i.e., square of Fourier transform) 
of the initial portion of waveforms (i.e., absolute time bins 1 to 30) arriving to both detectors 
were not influenced by water turbidity and was commonly characterized by a white noise 
distribution of energy (Fig. 9(a)-(b)). In general, the denoising of off-water noise in ch_2 and 
ch_3 decreased the energy of frequencies higher than 0.6 and 0.8 Ghz, respectively. For co- 
and cross-polarized receivers, the in-water noise of waveforms (i.e., backscattering power 
associated to the last 50 time bins) measured in ‘clear waters’ was in average higher with 
respect to that associated to waveforms obtained in ‘turbid waters’ (Fig. 10). Likewise, the 
power spectra of denoised waveforms for in-water noise showed a greater reduction of energy 
at frequencies above 0.3 Ghz (W decreased up to 5 decibels in ch_3) which is indicative of a 
low pass filtering effect from the PMT, which has the 3dB drop-off point at 0.25 GHz. (Fig. 
10(c)-(d)). 

3.2. Interpretation of PC components 

PC1, PC2, PC3 and PC4 explained 63, 26, 10 and 1% of the total variance, respectively. An 
example of PC scores for the first relative time bin of each waveform subset is illustrated in 
Fig. 3. 
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Fig. 3. Principal component scores and anomalies of optical parameters as a function of water 
depth. a) PC1 and Sd

ch1, b) PC2 and Fchl, c) PC3 and βr and d) PC4 and DRI; scores (left y-
axis), anomalies (right y-axis). 
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Principal component scores showed that PC1 variability was strongly associated to 
anomalies of non-polarized backscattering (Coeff = −0.59) as denoted by the covariations 
observed at 4.6 and 54.8 m depth (Fig. 3(a)). PC2 was mainly explained by changes on 
chlorophyll-a fluorescence (Coeff = 0.89) (Fig. 3(b)). Direct correspondence between PC2 
and Fchl was particularly strong at 3.3 and 25 m depth. Vertical variations of PC2 and 
anomalies of Fchl values were uncoupled at depths greater than 51.5 m. Variability of PC3 
was mainly attributed to depth changes on βr (Coeff = 0.82) (Fig. 3(c)). Large positive 
covariations between PC3 and anomalies of βr were detected at 19.2, 24.2 and 29.5 m depth. 
Lastly, PC4 was principally related to anomalies of non-polarized backscattering and DRI 
(Coeff = −0.72 and 0.69, respectively) (Fig. 3(a)-(d)). The inverse covariation between PC4 
and changes on DRI was well defined at 3.2, 4.6, 5.5, 25 and 55.3 m depth. 

In general, the contribution of PC1 to total variance of vertical profiles tended to increase 
further away from the LiDAR detector but in the last 7 ns of each wavelet subset where a 
steady drop occurred (Fig. 4(a)). Notice that each bin includes information from different 
depths and water turbidities. Also, time-resolved plots depicted in Fig. 4 correspond to a 
relative time (tr) with respect to the first absolute time bin (i.e. 40 or t0). 

 

Fig. 4. Range-resolved variation of PC variance contribution as a function of relative time (tr). 
a) partial contribution of each PC (PC1-PC3, left axis, PC4, right axis), b) log-transformed 
denoised LiDAR waveforms for ch _1; data with (solid symbol) and without (empty symbol) 
scattering layers, c) and d) same as b) but for ch_2 and ch_3, respectively. ZFSUIL is the 
instrument depth. 

The variation of PC2 contribution showed a V pattern with values decreasing from tr 0 to 
18.3 ns, and increasing from tr 18.3 to 40 ns. PC3 contribution with respect to different 
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positions along the waveforms mirrored the variations associated to PC2. Lastly, contribution 
of PC4 tended to increase with distance even though this monotonic variation was disrupted 
at time bins 15.4 and 26.3 ns (Fig. 4(a)). The slope break in PC1 contribution toward the last 
portion of the waveform was related to range-resolved changes of LiDAR backscattering 
(Fig. 4(b)(c)-(d)). This drastic variation occurred in non-polarized and polarized waveforms 
measured in turbid regions associated to surface or deep waters (i.e., green and black 
symbols, respectively). There was not a clear connection between waveform shapes and 
range-resolved variability of PC2, PC3 and PC4 contributions. 

Case studies of principal components scores are shown in Fig. 5 for waveforms obtained 
at different distances of PC1-derived discontinuities situated near the surface (3.2 and 5.3 m), 
mid-depth (25.2 and 27.6 m) and deep (53.9 and 56.6 m) vertical locations. 

 

Fig. 5. PCA scores as a function of range to optical layers. Shallow, mid-depth and deep (left, 
center and right panels, respectively) PC1-derived layers (vertical dash lines). Far, intermediate 
and near position of FSUIL with respect to major PC1-derived discontinuities (upper, central 
and lower panels, respectively). PC1 scores for panels c,f and i (right y-axis). 

As discussed before, these PC1 anomalies mainly reflect changes on non-polarized 
backscattering. Unlike Fig. 3, the vertical spacing between scores in Fig. 5 is 5.5 cm (i.e., 14-
fold finer resolution than FSUIL depth differences between consecutive waveforms). That 
explains why the scattering peaks determined in Fig. 5 are not seen or barely distinguished in 
Fig. 3 where anomalies correspond to the first relative time bin of each waveform subset. 
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Also, these optical layers were difficult to detect or absent in vertical profiles of additional 
optical measurements (e.g., bb) having a coarser spatial resolution (i.e., ~0.5 m) (Fig. 6(a)). 

3.3. Layer detection and composition 

In general, full range-resolved PC2-derived scores revealed an inverse covariation with 
respect with PC1 scores but at 53.9 m where scores changed in the same direction. Low PC2 
scores usually matching the scattering layers suggest that strong vertical scattering 
discontinuities are characterized by high chlorophyll values as PC1 is inversely related to 
magnitude of non-polarized LiDAR backscattering. The correlation between PC1 and PC2 
scores was not clearly related with LiDAR stand-off distance or water turbidity. To 
exemplify, the Spearman Rank correlation coefficient with an interval of confidence of 95% 
and for a layer located at 56.6 m was −0.973, −0.991 and −0.945 for a long, intermediate and 
short LiDAR stand-off distance, respectively. Also, additional analysis revealed that 
amplitude of PC1-derived scattering peaks as computed using peak-specific baselines was not 
related within the same waveform to the distance between the scattering layer and each 
receiver. Neither changes of amplitude seemed to be sensitive to FSUIL stand-off distances to 
the scattering layer as FSUIL was moving upward. 
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Fig. 6. Vertical profiles of ancillary optical variables. a) bb (left y-axis), Fchl/bb (right y-axis), 
b) bbp

eff (left y-axis), ωo (right y-axis), c) 1-m averaged c and diff(c-Ksys) (left y-axis), f(c-Ksys) 
(right y-axis). Uncertainty bars represent ± 2 standard errors. PC1-derived layers (vertical dash 
lines). 
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Vertical variability of range-resolved PC3 scores did not necessary follow changes on 
PC1 scores (e.g., mid-water peaks from ‘close’ position) (Fig. 5€). Indeed, direct (e.g., Fig. 
5(i)) and inverse (e.g., Fig. 5(a)) covariations between PC1 and PC3 were identified within 
the same waveform or measurements obtained at different FSUIL locations. This suggests 
that scattering layers were not associated to typical low or high βr values. This is consistent 
with the lack of concurrent vertical changes on PC1, bbp

eff and ωo (Fig. 6(b)). Similar to βr, 
vertical variability of range-resolved PC4 scores did not reflect a clear correspondence with 
changes of PC1 scores. The depolarization ratio index was inversely related to PC1 scores in 
mid-water scattering peaks observed from a ‘close’ FSUIL position (Fig. 5(h)). However, this 
pattern disappeared as the LiDAR system was moving upward and approaching to the 
scattering feature situated at 25.3 m depth (Fig. 5(h)). 

No high resolution c or Ksys values were available in this study to evaluate the influence of 
multiple scattering effects on layer detection and composition. However, ancillary data and 
FSUIL-derived Ksys estimates showed in general a strong covariation between diff(c - Ksys) 
and DRI values including at those locations where scattering layers were present (Fig. 3(d) to 
6(c)). Although f(c - Ksys) tended to increase near the surface and toward the bottom of the 
vertical profile, no clear relationships were observed between f(c - Ksys) and DRI as function 
of water depth. 

4. Discussion 

The interpretation of results is organized in four main sub-sections encompassing the 
processing of raw waveforms including noise reduction techniques (1), the interrelation 
between principal components and optical proxies related to composition and size distribution 
of particulates (2), the range-resolved contribution of principal components to total variance 
(3), and the detection of scattering layers as a function of distance to the LiDAR receiver and 
water turbidity (4). 

4.1. Denoising of LiDAR waveforms 

A critical stage for developing accurate algorithms for finding and identifying submarine 
optical targets including strong spatial discontinuities is the quantification of measuring 
errors. Raw LiDAR backscattering measurements include two main kinds of noise that need 
to be removed before deconvolving each waveform: systematic and random uncertainties 
[27]. Random errors are related to the shot noise or noise originated from variations on the 
laser illumination and electromagnetic phenomena at the surface of the receiver (e.g., 
photoemission). These noise sources also include thermal fluctuations derived from different 
electro-optical components intervening during the light transmission and reception, random 
spikes caused by cosmic rays and non-deterministic variations originated from the digitizer. 

Conversely, systematic noise comes from poor calibration, photodetector hysteresis, 
specific frequencies produced by electronic components and not related to the measurements 
and defective optical components. In terms of standard deviations, the application of wavelets 
reduced up to 3-fold the noise in ‘off-water’ and ‘in-water’ portions of selected waveforms. In 
general, the noise reduction of waveforms associated to different wavelets was more effective 
in ch_3 and at higher turbidities. The greater denoising of backscattering measurements made 
by ch_3 in turbid waters was associated to the smaller magnitude and variability of the signal 
arriving to ch_3 with respect to ch_1 and ch_2. 

4.2. Interpretation of PCs variability 

The largest contribution to PCA variance in this study was attributed to non-polarized LiDAR 
backscattering (i.e., total variability explained >60%). The impact of polarization changes as 
inferred from DRI was secondary due to the geometric configuration of the transmitter-
receiver. 
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Polarization rotation due to a single scattering event can be described by a 16-element 
scattering matrix, which can be computed for a spherical particle with a known size and 
refractive index structure using Rayleigh-Gans approximation. However, typical oceanic 
particles vary in size, morphology, refractive index, and hence the theoretical predictions may 
have practical limitations for oceanic particles. Scattering matrices of collected samples 
representing a range of typical oceanic waters measured by Voss and Fry [28] show 
polarization-sensitive effects in some of the matrix elements, however, the measurement 
range (10° - 160°) does not extend to the scattering angles of FSUIL (179.1° and 178.4°). 
Linear depolarization ratios of an oceanic airborne LiDAR (i.e., ratio of scattering field 
intensities in the perpendicular and parallel directions to the original laser polarization plane) 
at angles near π has been found to responsive to the characteristics of bulk particle 
populations in coastal and open ocean environments [29], however, it has also been discussed 
that while the measurement of two orthogonal components of the airborne time-resolved 
backscattering signal may be an effective method to detect vertical structures within water 
column in an oceanic environment, the effect is likely to be also result of contributions from 
multiple forward- and back-scattering events in a relatively turbid environment [30]. Hence, 
the FSUIL depolarization measurement is expected to be most sensitive in a turbid 
environment or in environment where strong scattering layers are present. 

Fchl was the main parameter altering PC2 even though an uncoupling between 
chlorophyll fluorescence anomalies and PC2 was detected in waters deeper than 51.5 m. PC2 
scores associated to Fchl covaried directly with those corresponding to Sd

ch1 (Coeff = 0.89 
and 0.25, respectively). This suggests that relatively high LiDAR scattering returns were 
associated with high-chlorophyll measurements and viceversa. The lack of covariation 
between PC2 and Fchl in relatively deep waters was likely attributed to the dominant 
contribution of non-algal particulates (e.g. minerals, phytodetritus) to the LiDAR 
backscattering signal. Indeed, relatively low and constant Fchl to backscattering ratios as 
derived from concurrent backscattering coefficient measurements at 532 nm during the 
FSUIL surveys were calculated at depths greater than 37 m (Fig. 6(a)). The increase of 
turbidity/chlorophyll fluorescence ratios with depth has been reported in coastal waters of the 
Irish Sea where [31]. 

The βr was the major source of variability of PC3 (Coeff = 0.82) and was inversely 
correlated with PC1 (Coeff = −0.40). Assuming a minor influence of pure seawater on 
vertical angular scattering changes, it is suggested that variations on volume scattering 
function and associated PC3 in this study was likely related to small-sized and/or mineral 
particulates. In general, the fraction of backward scattering increases as particulates have a 
smaller diameter and/or their chemical composition become enriched in inorganic matter [32]. 
Since the size of scatters increases with turbidity of natural waters, and particle forward-
scattering at very low-angles (i.e., Fraunhofer diffraction) is directly related to the size of 
scatters [33], the backward scattering contributions as measured by FSUIL are less altered by 
modifications on particle size distributions if particle densities are relatively low.As c 
increases, the contribution of forward-scattered photons to total scattering is expected to 
increase. Thus, the influence of particle size will become more important as water turbidity 
increases. 

4.3. Range-resolved variability of PCs 

The general increase of PC1 contribution as a function of tr indicated an overall decrease of 
non-polarized backscattering with range. This phenomenon was mainly linked to the power 
attenuation of the LiDAR signal at longer optical paths. The curvature change and subsequent 
decrease of PC1 contribution between tr 31.7 and 40 ns was related to the shape of 
waveforms measured in ch_1, ch_2 and ch_3 and water samples characterized by relatively 
high turbidity levels. This effect was explained by the increase of multiple scattering toward 
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the trailing portion of the waveforms. As photons suffer a greater number of collisions, the 
backscattering signal is slightly augmented, thus the contribution of PC1 decreases. 

Another physical process encompassing photons arriving to ch_2 and ch_3 receivers was 
the change of depolarization with range. This behavior was manifested as a general increase 
of PC4 contribution with distance to the LiDAR source. As the laser beam is travelling far 
from the source, higher orders of scattering become more prevalent due to particle and 
molecular collisions. In the near-range, single-backscattered photons at scattering angle of π 
dominate and depolarization is minor. Conversely in the far-range, optical paths and number 
of collisions increase, and the scattering directions of photons become more diffuse and less 
concentrated around the π direction. This should lead to an augmentation of DRI index values 
[29]. Lastly, range-resolved variation of PC4 contribution to total variance presented 
‘shoulders’ (i.e., sharp increase or decrease of backscattered power) that were attributed to 
sharp changes on optical composition of the medium as FSUIL was moving upwards. 

4.4. Full range-resolved PC scores 

The remote detection of optical scattering layers by FSUIL was possible in waters 
encompassing a wide range of water turbidity (i.e., c variation 6-fold) and at distances to the 
receiver as long as 4.3 m. Anomalies in scattering- and absorption-related properties of 
optical layers were consistently identified based on high temporal resolution scores 
corresponding to PC1 and PC2, respectively. The use of PC3 and PC4 scores potentially 
provide finer detail regarding composition of the optical features. In general, the scattering 
layers were characterized by having a variable relationship between PC1-PC2 and PC3-PC4 
scores. Regarding PC3, this suggests that composition of the layers was heterogeneous in 
terms of chemical composition likely associated to variations on particulate refractive index 
and particle size distribution affecting the volume scattering function [34]. Although having 
the same chlorophyll-a content, scattering layers may dramatically differ in terms of 
phytoplankton assemblages (e.g., diatoms vs flagellates) having contrasting particle size 
spectra and chemical composition (e.g., presence of biogenic silica or opal) [35]. 

Regarding PC4, high scores were expected to match high backscattering values as linear 
depolarization increases with scattering [28]. However, this pattern was not always observed 
as the largest DRI anomalies did not always coincide with the location of the scattering 
layers. LiDAR studies have shown that changes in layer internal structure and composition 
(e.g., spherical vs non-spherical scatterers) have a major influence on range-resolved behavior 
of LiDAR linear depolarization [28,29]. Thus, it is suggested that additional factors not 
considered in this study (e.g., particle shape, spatial distribution of optical components within 
the layer) were responsible of the lack of coherence between scattering layer positions, PC4 
scores and associated DRI changes. 

Vertical variability of diff(c - Ksys) and f(c - Ksys) values suggested that multiple scattering 
effects were positively linked to water turbidity and approximate location of scattering layers 
under investigation. Also, depth changes of f(c - Ksys) was less clear with respect to that 
associated to diff(c - Ksys) indicating that optical properties of particulates affecting the 
angular distribution of photons (e.g., chemical composition, particle size distribution, shape) 
had a secondary role on determining multiple scattering. 

The vertical location of optical layers as inferred from the PCA technique was consistent 
with previous preliminary results using anomalies computed for each time bin of multiple 
waveforms obtained along the vertical. In this case, the vertical profile was made by 
descending the instrument with the laser shooting-downwards (i.e., nadir angle). Also, 100 
instead of 80 time bins were processed by using the same reference time t0 (i.e., absolute time 
bin = 40). Briefly, this filter (hereafter ‘median’ filter) is obtained by subtracting the median 
backscattering signal from each Sd value and normalizing the resulting difference by the 
standard deviation corresponding to that specific time bin (Fig. 11, Appendix). This ‘median’ 
filter showed the same main peaks derived from PCA and identified near the surface (e.g., 5-7 
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m) and the bottom (e.g., 55 m) by ch_3 and ch_1, respectively (Fig. 11a,c). Notice that 
median-based DRI anomalies were also useful to find surface layers (Fig. 11d). Despite this 
agreement, layer detection differences between the two techniques were found in some cases. 
In particular, the ‘median’ filter applied to ch_2 allowed a better visualization of relatively 
low-scattering/low-Fchl peaks at mid-depth (e.g., 38 m). Conversely, the contrast produced 
by the ‘median’ filter and backscattering signals derived from ch_1, ch_2 and ch_3 was 
insufficient to discriminate high Fchl features present at 25 m depth. 

5. Conclusions 

In the first part of this manuscript, a major effort was devoted to eliminate the system-related 
noise from the raw LiDAR backscattering signals derived from three channels encompassing 
different light polarization states. In the second part, the variability of the noise-free LiDAR 
signals was decomposed in orthogonal components and related to vertical changes of total 
scattering (i.e., water + particulates) at two angles, pigmented particulates using chlorophyll-a 
fluorescence as a proxy and depolarization of LiDAR backscattering in the π direction. 
Lastly, in the third section the focus was the detection of optical layers from different 
shooting distances and under contrasting turbidity conditions. Also, potential effects of 
multiple scattering and composition of particulates on discriminating these layers were 
discussed. 

The detection of fine resolution optical features requires an optimization of the 
signal/noise ratios as the LiDAR backscattering signal decreases with range. Also, the 
minimization of random and systematic noise is critical for separating single from multiple 
scattering contributions and subsequent interpretation of microphysical properties of 
particulates. Here, the denoising was performed based on wavelets and was found to be 
dependent on the type of polarization and water turbidity. 

Calculations based on the first relative time bin of each waveform subset suggested that 
total variability of principal components was driven by changes on non-polarized 
backscattering, a first-order parameter reflecting the power of the LiDAR return. Also, the 
strong correlation between bb and Sd

ch1 pointed out that particulate absorption had a secondary 
impact on vertical variability of LiDAR waveforms with respect to that attributed to 
particulate scattering. The use of βr and DRI values did not seem to improve the 
characterization of layers in terms of composition. This difficulty highlights the large 
variability of second-order attributes (e.g., refractive index) of particulates within each 
scattering layer. Lastly, the detection of scattering layers did not necessary improve when the 
waveforms were generated closer to the layers and/or at lower turbidities due mainly to the 
rapid changes on inherent optical properties along as the LiDAR system was displaced 
upward. This contribution has two important findings. Firstly, the concurrent use of different 
signals associated to particulate absorption and scattering help to interpret the origin of the 
LiDAR backscattering and the mechanisms affecting the time/space variability of waveforms. 
Secondly, a non-invasive method was proposed and successfully evaluated to find and 
characterize scattering discontinuities under the sea. The suggested signal processing 
technique does not necessarily require vertical profiles and can be actually calibrated by using 
a fixed location and time series of ancillary optical information. Resulting time-resolved 
scores can be later applied in the same optical environment for detecting and discriminating 
multiple scattering targets at a fine resolution (i.e., ~5.6 cm) and optical depths as large as 4. 
Thus, the algorithm presented here is expected to be very useful for understanding patchiness, 
monitoring of subsurface oil spill features and localization of mines and military structures. 
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Appendix 

 

Fig. 7. Performance of wavelet denoising. a) ch_1, b) ch_2 and c) ch_3. Correlation coefficient 
between raw and denoised full waveforms (ρs) (left y-axis), depth-interpolated beam 
attenuation coefficient (c (right y-axis). Wavelets acronyms are defined in section 2.2. 
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Fig. 8. Off-water noise of waveforms obtained at different water turbidities. a) and c) c = 0.26 
m−1, b) and d) c = 1.02 m−1; ch_2 (upper panels), ch_3 (lower panels), raw (black line) and 
denoised (blue line) signal. 
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Fig. 9. Power spectra of noise (W) measured at different water turbidities. Off-water (upper 
panels), in-water (lower panels), ch_2 (left panels), ch_3 (right panels), W is the spectral 
density of the Fourier transform. Uncertainty bars are ± 2 standard errors. 
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Fig. 10. In-water noise of waveforms obtained at different water turbidities. Turbidity cases 
and symbols as Fig. 8. 
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Fig. 11. Median filter anomalies of Sd as a function of water depth. a) ch_1, b) ch_2, c) ch_3 
and d) DRI. Each shot generates 1 waveform. 
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